Global Energy Perspective

Watch the Streaming Presentation

JPL von Kármán Lecture
Series Feb 2008
Video without captions

UC Santa Barbara Kavli
Institute, December 2007
Video: med, high
Audio: low, high
Online slides

Caltech Watson Lecture
Series, May 2005

Presentation Abstract

This presentation describes and evaluates the technical, political, and economic challenges involved with widespread adoption of renewable energy technologies.

First, we estimate the available fossil fuel resources and reserves based on data from the World Energy Assessment and World Energy Council. In conjunction with the current and projected global primary power production rates, we then estimate the remaining years of supply of oil, gas, and coal for use in primary power production. We then compare the price per unit of energy of these sources to those of renewable energy technologies (wind, solar thermal, solar electric, biomass, hydroelectric, and geothermal) to evaluate the degree to which supply/demand forces stimulate a transition to renewable energy technologies in the next 20-50 years.

Second, we evaluate the greenhouse gas buildup limitations on carbon-based power consumption as an unpriced externality to fossil-fuel consumption, considering global population growth, increased global gross domestic product, and increased energy efficiency per unit of globally averaged GDP, as produced by the Intergovernmental Panel on Climate Change (IPCC). A greenhouse gas constraint on total carbon emissions, in conjunction with global population growth, is projected to drive the demand for carbon-free power well beyond that produced by conventional supply/demand pricing tradeoffs, at potentially daunting levels relative to current renewable energy demand levels.

Third, we evaluate the level and timescale of Research and Development investment that is needed to produce the required quantity of carbon-free power by the 2050 timeframe, to support the expected global energy demand for carbon-free power.

Fourth, we evaluate the energy potential of various renewable energy resources to ascertain which resources are adequately available globally to support the projected global carbon-free energy demand requirements.

Fifth, we evaluate the challenges to the chemical sciences to enable the cost-effective production of carbon-free power on the needed scale by the 2050 timeframe.

Finally, we discuss the effects of a change in primary power technology on the energy supply infrastructure and discuss the impact of such a change on the modes of energy consumption by the energy consumer and additional demands on the chemical sciences to support such a transition in energy supply.

Examine Additional Resources

Presentation (2.49 MB)
Presentation (27.3 MB)

Engineering & Science
(suitable for the
general public)
PDF (5.30 MB)

MRS Bulletin (more
technical information)
PDF (927 KB)

Energy and Transportation,
National Academy Press,
2003, Chapter 5

Chemical Challenges in
Solar Energy Utilization,
Proceedings of the National
Academy of Sciences
Online HTML
PDF (637 KB)

Transcript (187 KB)

Lewis Research Group, Division of Chemistry and Chemical Engineering
Caltech 127-72, 1200 East California Boulevard, Pasadena, California 91125